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ABSTRACT

Bright spot is one of the pattern classes in a seismic section and
the indicators of gas (hydrocarbon) accumulation. In the past, detec-
tion of bright spots depended primarily upo‘n visual examination and
the experience of a geophysicist. It is the authors' contention that
bright spot detection could be made more confidently by computer-
aided analysis. This study concerns with two computer-aided methods.
One is the decision-theoretic pattern recognition, the other is the syn-
tactic or structural pattern recognition. Using these two methods, a

seismogram is classified into two classes, i.e., bright spot and non-

bright spot.
In the decision-theoretic pattern recbgnition, three features from
seismic traces extracted, envelope, instantaneous frequency, and polar-

ity. Hilbert transform theorem plays an important role in the analytic

signal analysis. Linear and tree classification techniques are applied.
The classification result provides candidate bright spots.
The second approach to detect candidate bright spots is the utiliza-

tion of the syntactic pattern recognition technique. Tree classification



xviii

is used to extract the pattern wavelets of bright spot. Structural infor-
mation of the pattern wavelets of a bright spot is used, as are Levensh-
tein distance computation and nearest-neighbor decision rule. A thres-
hold is determined from error probability calculation and is used to

detect candidate bright spots.

Another factor affecting the detection of bright spot is frequency
attenuation. A "partitioning-method” is presented. A seismogram is
partitioned into small sections and the tree classification is performed
in each section to detect the candidate bright spot.

After the candidate bright spots are determined, syntactic pattern
recognition technique is used again to recognize the string representa-
tion of a bright spot in a two dimensional seismogram. The final result

will indicate a bright spot or non-bright spot.

It is common in seismic signal analysis to use the zero-phase
Ricker wavelets. This study also utilizes these patterns in the simula-
tion to test the proposed techniques as they are applied to the
relative-amplitude real scismogram. The classification results obtained
from these computer-aided methods can be used to improve seismic

interpretation.



CHAPTER I

INTRODUCTION

1.1 Statement of the Problem

By 1972 many oil companies had become successful in predicting
the occurrence of offshore gas from exploration seismic reflection data.
These predictions were based on anomalies that would be expected in
the high amplitudes of reflections caused by differences between the
reflectivity of surfaces bounding sands containing gas and those bound-
ing water or oil bearing portions of the sands. The amplitude' of a
seismic wave reflected from an interface between two layers of materi-
als is governed by the reflection coefficient ® which is expressed for

normal incidence by the relation

_ Dng—Dl Vl
" DyVo+D,V,

R
where D, and D; are the respective densities on the near (incident) and
far sides of the boundary and V; and V, are the respective velocities for
the two sides. The product of D and V is known as the acoustic
impedance, and it is evident that the reflection coefficient and hence
the reflection amplitude depend on the change in acoustic impedance
across the reflecting interface. A high-amplitude portion of the

reflection is referred to as a bright spot [dob76a].



Some very important indicators in predicting the occurrence of gas
and oil from real seismic reflection data are as follows [dob76a, pan70a,

pay77a, she?4é, she75a, she76a].

(1) High amplitude is related to the high reflection coefficient at
the top boundary of the gas sand.

(R) Low frequency wavelets are at the reflection of the top boun-

dary of gas sand zone because of the high frequency attenuation.

(3) Phase reversals are produced by a negative reflection
coefficient at the top boundary of gas sand and again by the positive
reflection coefficient at the bottom boundary of gas sand.

Three examples of relative-amplitude real seismograms of bright
spot from Dobrin are shown in Fig. 1.1, 1.2, and 1.3 [dob76a]. The shape
of the bright spot is a limited continuous reflection layer and may be
horizontal, arched, or concave. The problem is that the interpretation
is strictly by visual analysis. A seismogram is interpreted by an inter-
preter from his experience, geological information from both ends of
the seismogram, well information, etc. Interpretation of seismic sec-
tions is a tedious and subjective task which challenges the exploration
geophysicists. Furthermore, subtle changes in the nature of the
reflected signal often cannot be seen by visual analysis. Successful
application of automatic information extraction techniques to seismic
exploration data would greatly relieve the burden of visual inspection of

large quantities of seismic section plots.

Physical properties of bright spot are used in this study. The
bright spot in this study is defined in the following.

Bright spot has the following three kinds of physical properties and a

continuous reflection layer.
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Figure 1.1 Record section processed to bring out relative amplitudes.
Bright' spot at center shows known gas accumulation. (Western Geophy-

sical Co. of America.) (After Dobrin, 1976)
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1976)



]
Receiving station '

« PRODUCTIVE 20NE

e

. - . s =
° A = R popat oA A A .
=" v NSy N N Ty W N e \D\..’rh(}.\..v- . A~ ANA A C

A o 3 .-I.rﬁ Y MY Y N e 52 - ~ rr\l(n)-
e Pty S e h” R s S S e [ A
rey i p A O vy ¥ P T e s s e -
rvy 3 A R AT e T TR T T T
T | ST e e P s e i
v a2 Y. X A
" b S~ sy s i Y o Lad TR }')\l\rn{}.}ﬂl(.))?( 7N
Lt W .. oY N S WVAS VSR TN A S N/ ——~
- — e T ek BN WS AR, WY NS i VNS T/ A
I =+ N BT N e F 4= fe Ak PN N S P\ A —-
N o= —— TRl 2N SR RIS P e a e =
rvs = B s oy e en BN VYN VND WIS (PR N e NN N e —
= 2 e = ~ o PP N o S (e WS R SN g =
& - N N o Y, P V. s ——
™ T 7 o= p s g 12 e A P SIS WPy NN A =
r > — . (..l'lvllv o YT a v s Al Ay P e aaZ N e
- — -~ S e
@ = ~— | S A A SARY
rey W Sroy ey X e e Eal BTN R TS s ) e oy
aa. By - e o —
y— e . e o et p—— .-
aa PP, S, A b 5-gm: i e nuﬁﬁu SN T N —— o
vy Ada T P A B =
v o= V.. - - ~a e e e ¥ e~
= A = AT A B R R AT AT ~
~=8 v~ NS P A, o N g ™~ P 3 >
= i\)()hl\.’..vu.w}l =t A2 =y = ”r\\).(..(.\v\ —
r = 5 = ca et o g
T S ) v A Y e Ravaaast LAY — ]
N e T S N e o S e e T e —
rve Taba 4 L\.I(;» .r»nrhfiu - -ar - e — —
i ALY b AL AL~ A4 AT v P o] .
~ N e S T o ST funmm,)\))\)\»--. — g T =
e PO PN e S o S St r\lxl/\lc)(m.rll\
= S el
N A S e =
o A=A e R e~
AR = n R — ~—
NN =
—— AR, . A
— A ~ g .
U»Mr.\r\_ -~ g~
o - A A A AA ~ =
fron oe ™ N a3 g ~ = gmes
ha . O B - - ~— e
vy — oot o A n)nh' e 10 2 i men s st
VN 3 W({II))..’.I'{{)\. m —. — va!\l:
aa N o o D r}h
e fLa_ala "l ad e = S
A s & o~ A~
5 R o A o~
£ N AN e T A e e e S e
A . o~ (”ﬂ\.\(ﬂ;.)\.l\)\)\n%’)\) > T~ - T
19 A S P -, SO S PPN N - =
L.))\_ru/l.)\))\.r\»u)\l;()i})l))\fr\rb oy —~—— =3 - i
A -
A A AT AR a4 VA TSN G ey 5=
D Y T P A2 U SR S armrta—r A b~ e -
— SRR A A A A T AT A T T AR A AT —
AT A A e Y =
.W”II' A AT AT SRS WY i~ i
- ~ 4 =
. S s e P
'3 .
A N~ t;t(\;.\(l“’)\k\rkl(“\,\\nmm\ 7= s -
T o -~ A AL A A e P d —

- v 5 ——
= ==== Ao A A A A < =
— A T 1 s 2L TG _.\r; ~— ~ £ —

O A- T -~ \%\ - < L
- e ¥ A - A
P « R A A 3 MOL éf..W.).\m- >/ mv 3 -t =
= STALR A A A 3 = =

4334 W1 Mid20 v AP o) Ve s

a— el Ay A, o -~ ™~
——t- — ) L i - €A 3 G "I L ' |
8OK0J38 W -

WML MLV O

Figure 1.3 Depression of deep reflectors under multiple gas zones
caused by reduction of velocity in gas-bearing sands. Note attenuation
of reflections below well at times greater than 1.1 s. (Continental 0il

Co.) (After Dobrin, 1976)

(Sec.)



(1) The first kind consists of the properties of high amplitude, low fre-

quency, and negative polarity.

(R) The second kind consists of the properties of high amplitude and low

frequency.

(3) The third kind consists of the properties of high amplitude and

negative polarity.

Data satisfying at least one of these three kinds of properties is called a
candidate bright spot. Data satisfying the properties of continuous
reflection layer and one of the three kinds is called a bright spot. The
second and third kinds are necessary due to the fact that low frequency

content or polarity may not be significant in the seismogram.

The absolute magnitudes of the three physical properties may not
be as important as their relative values because the reflection from
geological structure is case by case or area by area. The dominant
wavelets may be zero-phase as zero-phase Ricker wavelet [ric40a, 45a,
53a] or minimum phase [rob67a]. Comparing the dominant wavelets in

the seismogram, the polarity can be determined.

Bright spot is one of the pattern classes in a seismic section and
the indicators of gas (hydrocarbon) accumulation. In order to detect
bright spot more confidently by computer-aided analysis, two methods
are proposed. One is the decision-theoretic pattern recognition and the
other is the syntactic or structural pattern recognition. Because the
physical properties of a bright spot are relative, computer-geophysicist
interaction is needed in this study. The seismogram is classified into

two classes, i.e., bright spot and non-bright spot.



In the decision-theoretic pattern recognition, some testing traces
are selected. The testing traces may be randomly selected or selected
at the high-amplitude portion in the seismogram. The purpose of the
testing traces is for the data reduction and to detect whether or not
the candidate bright spot is in the seismogram. Three features are
extracted: envelope corresponding to the amplitude, instantaneous fre-
quency corresponding to the frequency content, and polarity testing
the phase reversal. Linear and tree classification techniques are
applied. The classification is point-by-point. The classification result is

the candidate bright spot.

The other approach to detect a candidate bright spot is using the
syntactic pattern recognition technique. Testing traces are selected
from the seismogram. Tree classification is applied to detect the pat-
tern wavelets of bright spot in the testing traces. Structural informa-
tion of the bright spot wavelets is used. Levenshtein distance computa-
tion, and the nearest-neighbor decision rule are used. A threshold is
determined from error probability calculation and is used to detect the

candidate bright spot. The classification is trace-by-trace.

Reflection of frequency attenuation affects the detection of bright
spot. A "partitioning-method" is presented. A given seismogram is par-
titioned into small sections. Tree classification is performed in each
section to detect candidate bright spots. The major advantage of the
partitioning-method is that the overlapping distribution of the envelope

and instantaneous frequency can be separated.

After the candidate bright spots are determined, syntactic pattern
recognition technique is used again to recognize the string of bright
spot in a two dimensional seismogram. Three kinds of string distance

computation are proposed to test the continuity of bright spot pattern.
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The final result will indicate a bright spot or non-bright spot.

Zero-phase Ricker wavelets are usually used in the simulation of
the seismic analysis [rob8ia, tan79a]. From the distribution of
envelope and instantaneous frequency of Ricker wavelets, tree
classification is adopted. At first, obvious Ricker wavelets are classified.
Then, a simulated seismogram using Ricker wavelets is classified. At
last, real seismograms at Mississippi Canyon and High Island are
detected to determine whether or not there is bright spot and where
the bright spot is located. The r'elative-amplitude real seismograms in

this study are provided by Mr. K. M. Barry, Vice President of the
Teledyne Exploration Co.

1.2 Literature Survey

1.2.1 Pattern Recognition in Classification
of Seismic Signals

Most works in the analysis of seismic signals deal with discrimina-
tion between earthquake and nuclear explosion events. Chen [che77a,
78a, 82a, 83a] proposed a statistical pattern recognition method for
classification of earthquake and nuclear explosion waves. He cites a
number of characteristics of seismic signals which are used as discrim-
inants. Among these are spectral ratios for body waves and surface
waves, my, vs. Mg criterion and differences in P-wave amplitude spectra.
Liu and Fu [liuB2a, 82b, 83a] used syntactic approach to discriminant
earthquake and nuclear explosion waves. Anderson [and78a, 82a] and

Gaby [gab83a] used syntactic analysis in seismological waveforms.



Tjostheim [tjo75a, 77a, 78a, 79a] used autoregressive coefficients as
features for P-wave seismic discrimination. A seismic P-wave can be

represented by an autoregressive model of finite order.

Sarna and Stark [sar80a, 82a] also used autoregressive modeling

for the pattern recognition of earthquake and explosion data. The

results are poor.

Since 1980, several papers related to pattern recognition in seismic
exploration have been published. Bois [boiB0a, 81a, 81b, 82a] used
autoregressive coefficients for short trace sectors between the top and
the bottom boundaries of a reservoir and by this he was able to estab-
lish a decision criterion to distinguish the trace sector corresponding

te layers containing oil or gas and those containing water only.

Hagen [hagB8la] used principal components of instantaneous fre-

quency for the classification of regions of a seismic section into porous

and non-porous.

Huang et. al. [hua81b] decomposed a simulated seismogram into
density and velocity distributions to detect bright spots. Huang et. al.
[hua81ic] used Z,T, likelihood ratio and Chi-squared tests and spatial

relations to obtain continuous layer reflection coefficients.

Huang and Fu [hua82a] used envelope and instantaneous frequency
as features and decision-theoretic pattern recognition techniques for
the classification of Ricker wavelets and the detection of candidate
bright spots. The classification results are displayed in the original
time traces. This presentation was very important because it was very
successful in real data experimént [hua83a]. Huang and Fu also pro-
posed three hypotheses and tree classification techniques to detect
candidate bright spots [hua83a, hua83e]. Huang and Fu presented a

partitioning-method and tree classification in the detection of
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candidate bright spots for frequency attenuated seismograms [hua83c].

Syntactic pattern recognition had been applied to character recog-
nition, target detection, medical diagnosis, remote sensing, speech
recognition, automatic inspection, and identification of human faces
and fingerprints in the past decade [fu74a, 82a]. Huang and Fu
presented a syntactic pattern recognition technique for the

classification of Ricker wavelets [hua83d].

1.2.2Analytic Signal Analysis

Analytic signal analysis has been applied to seismological waves and
exploration seismic signal. Farnbach [far75a] used analytic signal
representation for seismological waves. A recent paper by Tanner,
Koehler, and Sheriff [tan77a, 79a, 80a] used complex trace (analytic sig-
nal) in exploration seismic signal. Sicking used complex trace in
modeling [sic78a]. Robertson and Nogami used complex trace to thin
bed stratigraphy [rob81a]. Huang et. al. used analytic signal represen-
tation for synthetic seismogram of bright spots [hua80a, 81a]. Huang
and Fu presented analytic signal analysis in Gaussian noise analysis and

their use in the classification of Ricker wavelets [hua83b].

1.3 Organization of Thesis

In Chapter 2, features are extracted by using analytic signal
analysis. Analytic signal analysis in AM, FM, sinusoidal signal, seismic
Ricker wavelets, and Gaussian .noise, is discussed. Hilbert transform

theorem plays an important role in the analytic signal analysis. The
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usage of the non-causal Hilbert operator is also introduced.

In Chapter 3, the motivation of using tree classification in the
detection of candidate bright spot is discussed. Use of linear classifier
is also discussed. Three hypotheses are proposed for the constrained
conditions to detect candidate bright spots similar to the constrained

condition in mathematical optimization problem. Tree classifier design

is discussed.

In Chapter 4, a partitioning-method and tree classification are pro-
posed to detect candidate bright spot in order to avoid the attenuation

effect. The procedures for partitioning a seismogram into small sec-

tions are discussed.

In Chapter 5, syntactic pattern recognition is used in the detection
of candidate bright spot. The roles of likelihood ratio test, optimal
quantization encoding, and the probability of detection involving the
global, local detection and thréshold setting to detect the candidate

bright spofs, are discussed.

For Chapter 3, 4, and 5, the results for the detection of candidate
bright spots in the simulation and real data experiments are demon-
- strated respectively. The classification results of Ricker wavelets are

also demonstrated.

In Chapter 6, syntactic pattern recognition technique is used again
to recognize the string of bright spot in a two dimensional seismogram.

The final result will indicate a bright spot or non-bright spot.

Finally, Chapter 7 summaries the whole study and proposes recom-

mendation for future work.
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1.4 Summary of Contributions

(1) Several lemmas are derived for the instantaneous frequency of
AM and sinusoidal signals. The instantaneous frequency of Ricker
wavelet is inferred from the instantaneous frequency of AM because the

central part of Ricker wavelet is a cosine modulated waveform.
() Instantaneous frequency can be used in FM demodulation.

(3) Non-causal Hilbert operator is padded with zeros in the middle
to avoid circular convolution. The minimum number of points of the

Hilbert operator required for a discrete signal with length N is derived.

(4) From the analysis of zero-phase Ricker wavelet, a tree

classification technique is adopted.

(5) Some lemmas for the analytic signal analysis of Gaussian noise
as the ground roll motion are derived and provide the references in the

tree classifier design.

(8) Three hypotheses are proposed for the constrained conditions
in the tree classification to detect the candidate bright spots similar to

the constrained condition of mathematical optimization problem.

(7) The major advantage of partitioning-method is that the overlap-
ping distribution of the envelope and instantaneous frequency can be

separated from different sections and attenuation effects may be

avoided.

(8) In the syntactic pattern recognition for the detection of candi-
date bright spot, the roles of likelihood ratio test, optimal quantization
encoding; and the probability of detection involving the global, local
detection and threshold setting in the detection of candidate bright

spots are quite important.
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(9) Syntactic pattern recognition technique is used to recognize
the string of bright spot in a two dimensional seismogram. Three kinds

of string distance computation are proposed to test the continuity of

bright spot pattern.
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CHAPTER II

ANALYTIC SIGNAL ANALYSIS: FEATURE EXTRACTION

2.1 Introduction

Feature extraction is the most important part in pattern recogni-
tion. The physical meaning and separability power of features are con-
cerned. In order to extract features from seismic signal, anal'ytic signal
analysis is applied. In this Chapter, analytic signal analyses in AM, FM,
sinusoidal signal, seismic Ricker wavelet, and Gaussian noise are dis-

cussed.

Zero-phase Ricker wavelets are usually used in the simulation of
seismic analysis [rob81a, tan79a]. The pattern wavelet of bright spot in
real data can be compared with the central part of zero-phase Ricker
wavelet. From Chapter 1, the physical properties of bright spot is rela-
tive. Here, 20Hz zero-phase Ricker wavelet is simulated as the
reflection wavelet of bright spot. The 20Hz Ricker wavelet has the f)hy-
sical properties of high amplitude, low frequency content, and phase
reversal. 30Hz zero-phase Ricker wavelet is simulated as the reflection
wavelet of non-bright spot. At first, pattern recognition techniques will
be applied to the classification of Ricker wavelets in a simulated seismic
trace and the detection of candidate bright spot in the simulated
seismogram. The one dimensional classification results can be used for

two dimensional classification problem. From the classification result
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of simulated seismogram, the detected portion should be a continuous
reflection layer. At last, pattern recognition techniques will be applied
to real seismograms. These will be described in Chapter 3. In Chapter
6, syntactic pattern recognition will be used to recognize the string of

bright spot. The final result of bright spot detection will be given. |

From the analysis of zero-phase Ricker wavelet, a tree classification
technique is adopted. The analytic signal analysis of Gaussian noise as
the ground roll motion provides the references in the tree classifier
design. These will be discussed in Chapter 3. The resolution analysis of

Ricker wavelet in this Chapter can be used to help the interpretation of

thin-bed effect in Chapter 3.

‘Analytic signal [gab48a, fra69a] has usually been used in radar sig-
nal analysis, but in recent years it has become more and more impor-
tant in seismic signal processing [far75a, tan77a, tan79a, hua8la,
huaB2a, hua83a, hua83b, rob82a, hag8la]. Envelope, instantaneous
phase, and instantaneous frequency are some of the parameters in ana-
lytic signal representation. Envelope describes the shape of the signal.
Instantaneous frequency extracts the internal property of the signal
and is more important than the other two. Hilbert transform theorem
(named here) plays an important role in the analytic signal analysis. In
applications, the seismic zero-phase Ricker wavelets and sinusoidal sig-
nals can be considered as AM and the instantaneous frequency of these
signals can be derived. The number of points of Hilbert operator that
should be used are not discussed in [tan77a, 79a, 80a]. So the
minimum number of points for the Hilbert operator in the discrete
implementation will be discussed. Gaussian bandpass noise is simu-
lated as the ground roll motion in the seismic recording system. Pro-

perties of the analytic signal in the case of Gaussian 10 - 60 Hz white
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noise will be discussed here. Different definitions of envelope function
and phase function are derived in [tho69a]; the distributions are Ray-
lelgh and uniform respectively in the continuous time domain. For-
tunately, the distributions of envelope and instantaneous phase using
analytic signal analysis are derived here as Rayleigh and uniform
respectively in both discrete and continuous time domain. Usually fre-
quency discriminator and phase lock loop feedback tracking techniques
[zie76a, gag78a] are used in FM demodulétion.. But the instantaneous
frequency technique presented here can also treat FM demodulation.
The classification of signal and noise for the case of high S/N using
envelope property is also discussed. Instantaneous frequency tech-
nique treated in the time domain can also be used to detect a hidden
periodic signal when its period is unknown, not using periodogram
[blo76a] or harmogram [hinB2a]. In [craB7a], Cramer used the cosine
function as the real part and sine function as the imaginary part of the
analytic signal and derived results for envelope and instantaneous fre-
quency. It is a special case of analytic signal because the imaginary
part of the analyﬁc signal does not come from the Hilbert transform of
the original signal and Hilbert transform theorem is also not used. For
non-sinusoidal signal like seismic Ricker wavelets [ric40a, 45a, 53a] and
teleseismic Berlage function [far75a, hua81a], the analytic signal will be

calculated by using Hilbert transform [fra69a, hua81a].

2.2 Hilbert Transfer Function and Hilbert Transform Theorem

The Hilbert transfer pair [fra69a, zie'76a] is

| H(f)=—j sgn f <==> h(t):;rT
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Hilbert transform (H.T.) of sinusoidal signals [fra69a, zie76a] are as

follows:
H.T.{cos2nf ot }=sin2mf ot H.T.{sin2nf ot {=—cos2n f ot

An important theorem, Hilbert transform theorem (named here),

usually used in the signal processing is stated as follows:

If m(t) and c(t) have bandlimited spectra that are non-overlapping
and if the spectrum of c(t) lies entirely above that of m(t), then

H.T.Em(t)c(t)£=m(t)EH.T.(c(t))§=m(t)6(t).

Ziemer and Tranter [zie76a] have proved the theorem in the time

domain. This theorem can also be proved in the frequency domain.

2.3 Analytic Signal and Its Representations

The analytic signal ¥(t) of a real time function s(t) is a complex sig-
nal [fra69a, hua81a]:
Y(t) =s(t) +js(t)
where 5(t) is the Hilbert transform of s(t).
The analytic signal representations are defined as follows.
Envelope:
Env{s(t)} = A(t) = [p(t)| = Vs?(t)+53(t)
Instantaneous phase:

V(L) = /_y(t) = tan™? E%)L

or for Y(t) = [y ()| exp{jv(t);
In %(t) = Inlp(t)| + jo(t)
then ¥(t) = Im[ln ¥(t)]

Instantaneous frequency:



-1 dv(#) _ 1 4d -1 5(¢
fi(t)= em  dt T or E—Etan 1 :J(?%—;

s(t) B 5 )

< (t)+ s?(t)
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2.4 Analytic Signal Analysis in Sinusoidal Signals

~ Analytic signal analysis is used to extract features from original
signal. In order to test the power of separability for the extracted
features, the use of analytic signal analysis in sinusoidal signals is dis-
cussed. Suppose there are two sinusoidal signals as follows.
s1(£)=0.03*cos (2m*20*) , then A(¢)=0.03 , Ji(t)=20Hz .
s2(¢)=0.02*os (2m*30#) , then A(t)=0.02, f;(£)=30Hz .
Envelope and instantaneous frequency of the above two sinusoidal sig-
nals are shown as above. In the physical meaning, envelope equals to
the maximum absolute amplitude of the sinusoidal signal, instantane-
ous frequency equals to the carrier frequency of the sinusoidal signal.
This is in the time domain, not in the frequency domain. The distribu-
tion of envelope and instantaneous frequency is shown in Fig. 2.1. From
Fig. 2.1, the power of separability for the sinusoidal signals is good.
Based on this result, analytic signal representations can be used as the

features in the seismic signal analysis.
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2.5 Implementation in Discrete Calculations and
Minimum Number of Truncated Hilbert Operators

Required for a Finite Discrete Signal with Length N

From [gol69a, opp75a, rab75a], a Hilbert operator can be written as

follows:

h(n)= 1—ex£7[Tjn7r] forn #0

=0 forn=0

§(n) is s(n) convolving with the Hilbert operator h(n). That is,

sy =l gmLizemintnom)]
T m=—wm,m#n n-—m
L.z —y[1mezp (Grm )
—;-r—m=—§,m¢os (m ) =
- sin?( T
=2 Y s(m-n) =
T m=—c0,m 0

ors(nr)=1 3 h(nt—k7)s (k1)

k=00

In practice, the signal s(k 7 ) has only a finite extent. Suppose that

s(k 7 ) is zero outside the index range k=0, 1, -+ -, N-1.
N-1
s(nt)=7 Y h(nt—kT)s (k1) n=0,1, -, N-1.
k=0
or §(nt)=T1 2— h(kT)s (nT~kT) n=0,1, .., N-1.
k=-(N-1) ' :

The number of points needs for applying Hilbert operator is not dis-
cussed in [tan77a, 78a, 80a]. In [rab75a], the optimum design of
bandpass Hilbert transformer is derived. But the effect of using N-
point finite signal is not discussed. If a finite discrete signal is given as
(eg.@y,23,a3), N=4, the Hilbert transform can be constructed by follow- |
ing Table 2.1. Summation of the slant elements equals to the output at

©r, =0, t=1, t=2, t=8, - .. ete. From Table 2.1, the effective Hilbert
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operators at time t=0 to t=3 when the signal is present are
h_gh_3, -+ hghs Seven points of Hilbert operator are used in the
four point signal. If the number of Hilbert operator is larger than 7
points, the outputs at t=0 to t=3 are the same as the outputs of using
7-point Hilbert operator, although the outputs at both ends outside the
interval (t=0 to t=3) are different. So for a finite discrete signal with
length N, the minimum number of the truncated Hilbert operators is
@N-1. There is an example as follows.

Ezample 1:

In Table 2.2, the finite signal is given at interval t=11 to t=16, its
values are 1, and its length is N=6 points. From the above criterion, the
minimum number of points for Hilbert operator should be 2N-1 = 11. If
a 9-point (less than 11) Hilbe.rt operator is used, the outputs at t=11 to
t=16 are different from the outputs of using an 11-point Hilbert opera-
tor. If a 13- or a 15- point (larger than 11) Hilbert operator is used, the
outputs at t=11 to t=16 will be the same as the outputs of using the 11-
point Hilbert operator, although the tails outside the interval (t=11,
t=16) are different.

It is'much faster to implement §(n) in the frequency domain using
the FFT algorithm. In order to avoid circular convolution, signal s(n)
should be padded with sufficient zeros. For non-causal Hilbert opera-
tor, h(n) should be padded with sufficient zeros in the middle. Using
the base 2 FFT algorithm, the sequences s(n) and h(n) have to be zero-
padded (ZP) so that each is (3N —2), elements long, where (3N -=2)5 is
the smallest integer that is a power of 2 and is greater than 3N-2.
Therefofe, the frequency domain implementation may be expressed as

S(nT)=THFFT [FFT(s (nT)withZP)*FFT (h(nT)withZP in middle )]



9 point
Hilbert
operator

1 . 0000
2 . 6366
3 . 0000
4 L2122
5 . D000
b6 . 0000
7 . 0000
8 . 0000
g . Q000
10 . 0000
11 . 0000
12 . 0000
13 . 0000
14 . 0000
15 . 0000
16 . 0000
17 . 0000
18 . 0000
19 . 0000
20 . 0000
21 . 0000
22 . 000
294 . 0000
24 0000
25 . D000
26 . 0000
27 . 0000
28 . 0000
29 . 0000
30 - 2122
31 . 0000

-. 6366
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Table 2.2 Output of Hilbert operator

signal

et ok ek ek pod ek

CO00000C 0000000000 O0COD0O000OCCO

coutput
. 0000

. Q000

. 0000

. 0000

. 0000

. 0000

- 0000

-. 2122
- 2122
—-. 8488
—. 8488
- 2122
-. 2122
2122

. 2122

. 8488

. 8488

L2122

. a122

. 0000

. Q000

. 0000

3000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000

NN U SWN -

11 point
Hilbert
operator
. 0000

. 6366

. 0000
2122

. 0000

. 1273

. 0000

. 0000
.. 0000
. 0000

. 0000

. D000

. 0000

. 0000

. 0000

. 0000

. D000

. 0000

. 0000

. 0000

. 0000

. 0000

. 0000
. 0000

. 0000
. 0000
. 0000
-. 1273
. 0000
-. 2122
. 0000
~. 6366

signal

bt d b pek ped et

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

output
. 0000
. 0000
. 0000
. 0000
. 0000

-. 1273
-. 1273
-. 3395
=. 3395
- 9762
- 9762
-. 2122

-. 2122

L2122
212
. 9762
L9762
3395
. 3395
1273
. 1273
. 0000
- 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000



signal

13 point

Hilbert

operator
1 . 0000
2 . 6366
3 . 0000
4 L2122
) . 0000
& . 1273
7 . D000
8 . 0000
9 . 0000
10 . 0000
11 . 0000
12 0000
13 . 0000
14 0000
15 . 0000
16 . 0000
17 . 0000
18 . 000
19 . 0000
20 . D000
21 . 0000
22 . 0000
23 . 0000
24 . 0000
25 . 0000 -
26 . 0000
27 . 0000
2 -. 1273
29 . 0000
30 - 2122
31 . 0000
32 - 6366

[ T

00000000000 CCOCOCOCCODCOCOOO00OOO0OU0
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Table 2.2 Continued

output
. 0000
. 0000
. 000
. 0000
. 0000
-. 1273
~-. 1273
-. 3395
-. 3395
- 9762
- 9762
- 2122
- 2122
2122
2122
L9762
. 9762
. 3395
. 3395
21273
. 1273
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000

NOND>UO_sWN -

-
(&}

11

13
14
15
16
17
18
19
20
21

22

23
24
25
26
27
28
29
30
31

32

15 point
Hilbert
cperator
. H000
. 6366
. 0000
L2122
. 0000
. 1273
. 0000
. 0909

. 0000

. 0000
. 0000
. 0000
. 0000
. 0000
. D000
. 0000
. 0000
. 000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
-. 0909
. 0000
-. 1273
. 0000
—-. 2122
. 0000
-. 6366

signal

b Pt bk b puk e

OC00CO0O000O0000UO0O0C0O00OO0O0C0U0000OOO00O0O0

cutput
. 0000
. 0000
. 0000

-. 0909
-. 0909
-. 2183
-. 2183
-. 4305
-. 4305

-. 9762

-. 9762
- 2122

- 2122

L2122
. 2122
. R762
. 9762
. 4305
. 4305
. 2183
. 2183
. 0909
. 0909
. 0000
. 0000
. Q000
. 0000
. 0000
. 0000
. 0000
. 0000
. 0000
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Since Hilbert operator is not causal, when a finite discrete signal
convolves with Hilbert operator, the output always has small-value tails
before and after the finite interval where the signal is zero outside the
interval. From physical property, it is reasonable to assume that the
instantaneous frequency is zero when the signal is zero. So if the
denominator in the discrete instantaneous frequency is less than a
threshold (for example 0.00001), then f;(n7)=0. The other reason is to
avoid large instantaneous frequency f;(nT) for small denominator. In
the case of negative instantaneous frequency due to discrete calcula-
tion, they will be set to zero also. High peaks of instantaneous fre-
quency occur at both ends of a finite interval signal because the deriva-

tive will enhance the high frequency regions.

2.6 Instantaneous Frequency in AM Waveforms

Several lemmas are presented in this section.

Lemma 1:

If m(t) is a low frequency spectrum and f, is a high carrier frequency,
both spectra are non-overlapping, then the instantaneous frequency of
m.(t)cos (2 f ot ),m (¢ )sin (2mf ot ),(14+m. (¢))cos (2nf of), and
(1+m (t))sin (2mf ot ) is fo, that is the carrier frequency.

Proof :

Case 1. s(t)=m (¢)cos2nf ot

After taking Hilbert transform,

S(t)=m(t)sin2nf ot )

Y(t)=s (t)+js (L) =m (L)exp|jonS ot ] Ju(t) = rc;l-;‘mi i(&t‘%* =Jo
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The proofs of the other cases are based on the same procedure.

Lemma 2:
The instantaneous frequency of AM delayed signals in Lemma 1,
m (t)cos (Rmf o(t —ty)) etc., is still £,

These two lemmas are used to infer the instantaneous frequency of

Ricker wavelets later.

2.7 Instantaneous Frequency of Sinusoidal Waveforms

with AM Applications

As in Lemma 1, the sum of many sinusoidal waveforms can be
derived for AM signals, then the carrier frequency of AM will be the

instantaneous frequency. Several examples are shown in Table 2.3. The

following two lemmas are derived.

Lemma 3:
If the frequencies of sinusoidal waveforms are f1,fafs . fy , and
the sum of sinusoidal waveforms satisfies the properties of Lemma 1,

then the instantaneous frequency of this signal is fi

_ flargest +fsmallest
f’i - P>

Lemma 4:
From Lemma 3, if the frequencies Jufa fa - fn, of the sinusoidal
waveforms form an arithmetic series and the sum of these waveforms

satisfies Lemma 1, then the instantaneous frequency is



<6

Table 2.3 Instantaneous Frequency of the Sinusoidal Waveforms

Signal LF,
, : 1 | s(t) =cos2mf ol f
No baseband | 2 | s(t) =sinnf ot fo
3 | s(t) =cos2nfgt+sinmf ot fo
1| s(t) #cosanot +cosmf ot —1g) fo
Delay case | 2 | s(t) =cos2nf ot +sin2mf o(t —ig) f
3 | s(t) =sin2mf gt +sinnf o(t —tg) fa
s(t) =acos2maf ot +bcos2mBf ot
1 . +bcosn8f ot +acosRm10f of 7fo
=2(acos2m3f ot +b cos2mf ot)
-cos2n7f ol
Sum of s(t) =acos2m2f ot —bsin2n3f ot
sinusoidal 2 +bsinn9f ot +acos2mw10f of 6f 0
signal =2(acosm4f of +bsin2n3f ot )
'cos2m6 f of
3 | s(t) =sin2n2f of +sin2n6f ot 4f o
' =2sin2m4f ot cosRm2Sf ol




_7

_Satfotfat -+ fy
- N

o= f largest +f smallest
2

Ji

2.8 Rayleigh and Uniform Distributions

Rayleigh and uniform distributions have been derived in [pap8B5a].
If two random variables X and Y are Gaussian, independent, with zero
mean and equal variance, then the function
Z=VX%+Y?

has a Rayleigh distribution as follows.

Pﬂz):-%ezp[— 2 51,220
o o
=0 , 2<0
1 X
:t l-—-'
Let W=tan %

then random variable W is uniform in the interval ('—2_7T’ 72_r_)

These results are used in the following analysis.

2.9 Sinusoidal Signal and Gaussian Noise in Analytic Signal Analysis

The properties of the noise in the analytic signal analysis are inves-
tigated here. In order to collect seismic reflection signal, there is a
bandpass filter at the seismic receiving instrument. The ground motion
noise also passes through this bandpass filter. The simulated Gaussian

bandpass white noise passing through 10 - 60 Hz filter can be written as
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[zie75a, gag78a]

n(t)=n. ()cos (w t +9)— ng (¢ )sin (v, t +v) where Jc.=35Hz=.
From Ziemer and Tranter [zie7Ba], n (t) is generated by
n(t)2cos (wyt+9) passing through an ideal low-pass filter 0-25 Hz and
ng(t) is generated by n(t)[—2sin(wcf+w)] passing through the same
ideal low-pass filter. If n(¢) is a stationary Gaussian process, then n,(¢)
and 7 () must be Gaussian processes, with mean zero and variance o2.
If the power spectral density function of the Gaussian process n(t),
Sn(f), is 10 - 60 Hz white, i.e. symmetric with respect to f., then the
cross-correlation Ry (7)= R (7)=0, i.e., n () and ng(¢) are indepen-
dent Gaussian processes [zie76a, gag78a]. Gaussian white noise n(t) is
filtered by the 10 - 60 Hz bandpass filter. The carrier frequency of n(¢)
Is fc=35Hz. m(l) and ns(t) are 0-R5Hz low-pass so f,=35Hz lies
above the spectra of m.(¢) and ng(¢). Applying Hilbert transform
theorem in Section 2.2, the Hilbert transform of n(t), @ (¢), is

R (t)=n; (¢)sin(wct +9)+ ng (¢ )cos (v, t +9)
Although the same form of n(t) and % (¢) is given in [pap65a], the gen-
erations of n;(#) and ny(¢) are different. In the following derivation, set

¥=0 for convenient calculation. For signal, the sinusoidal signal is

s(t)=Scos (w,t).

Case 1: Gaussian 10 - 60 Hz white noise process only.

Bracewell [bra78a] stated that " Regarding y(t) as the superposi-
tion of harmonic components in unrelated phases, we see that the pro-
cess of Hilbert transformation which shifts every Fourier component by
a different amount, gives another but independent superposition of the
same kind. Based on these assumptions it is thus found that the

envelope is distributed according to a Rayleigh distribution,” where
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y(t)= 7m(¢) here. But this statement lacks a mathematical proof.
Applying Hilbert transform theorem to n(t), we can prove it here.
Substituting n(t) and 7 (t) into the formula of the analytic signal

representations,

Envis(t)} =A(t)=[y(t) | =Vn3(t)+n?(t) =/n2({E)+n2(t)

where n.(¢) and ng(t) are N(0,0° ) and independent, so A(t) is a Ray-
leigh distribution.

P (a)z—a'—ea:p[—gi] a=0
A(t) o2 D2

Lemma 5: The'envelope of Gaussian bandpass white noise is a Rayleigh

distribution.

For instantaneous frequency,

1
Jam E0= o n¥(t)+mA(t)
= 1 nc(t)ﬁs(t)—ns(t)nc(t)1

nZ(t)+nd(t) ’

So the instantaneous frequency is centered at the carrier frequency f..
The denominator, ng(t), ng (), ng(t), and ng(¢) are Gaussian.
nZ(t)+nd(t) is x*(R), Chi-square of 2 degree of freedom, but

Tie (t )ns(t) — Mg (t)ﬁ‘c (t)
nd(t)+nl(t)

is not expected to have any specific probability

distribution.

Case 2: Sinusoidal signal plus Gaussian 10 - 80 Hz white noise with the

same carrier frequency f,.
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:x:(t)=s(t)+'n.(t)=5'coswct+'n.c (t)cos(wct +9)—ng (£ )sin (wct+9)
Envix(t)} = A(t) = w(t)| = Vz2(t)+z%(¢) =V (S+n, (£))%+nl(t)
The distribution of A(t) is a Rician density [gag78a].

G,S\
12}
0.2

PA(t)(a)=%—exP[— (azoz )}Io( a>0

where ]o(a._.zs_) is the modified Bessel function of order zero.
o

For strong signal, S?>>¢?
then, A(t) =S+n,(¢)
Hence A(t) is approximately normal, with mean S and variance o2:

1 —(a-5)?
PA(t)(a‘)=maezp[ (aéo_z )

For weak signal, SR« o?
A@t)=VnZ(t)+ni(t)

which is the same as the Rayleigh distribution in Case 1.

1
4

For instantaneous frequency,
z(t) az (t) Z () dxd(tt)

1 di
Sir(t) = o z?(t)+z%(t)

1 g, 4 (S E)nst) |
2T T (S+ng (£))24nE(t)

So the instantaneous frequency is always centered at the carrier fre-

quency f.. The experimental results for weak signal are shown in Fig.

2.2.

Case 3: Sinusoidal signal plus Gaussian 10 - 60 Hz white noise with car-,
rier frequencies f, and f, respectively.

z(t)=s(t)+n(t)=Scoswt +n, (t )cos(w, t +¥) —ng (t)sin (w ¢ +9)

Envix(t) = AW = Wl = VaR(e)+zi(t)
=V (S +m ()P +nd(E)+n () —m E ()
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Figure 2.2A Weak signal (f ;=35Hz) plus Gaussian noise, its envelope and instan-
taneous frequency
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where  m (¢)=n,(t)cos (we —w)t—ng (t)sin (v, —w,)t and Gaussian
N(0,07).

For strong signal, S2>>0?

then, A(t) =S+m,(t)

Hence A(t) is approximately normal, with mean S and variance g*:

- —(a-5)?
P = e
402 TP o

For weak signal, S?<«o?
A(t)=Vnl(t)+nl(t)
So A(t) is a Rayleigh distribution.

For instantaneous frequency,

z(¢) 9Z(t) 7 (¢) 92 ()

o dt =

Frr(t) = o zz(t)'i'fz(t)
I_Mz(t)

T2 M,(t)

where

M(8)=5%+nB(t)+nd(t)+25m (t)
and My(t)=S%w,~S[-n, (t)sin (¢ —wq)t —ng (t)cos (wy—w, )t ]

+S 0y (E)+S om (£)+nl(E o +ng (¢ )iy (8)=ng () () +n2(E) o,

For strong signal, S?>>0?

Srr (t) = #[wﬁ%

where

Mt )="'w1nc2(t )‘wlnsz(t)‘s wym ()
=S[~7ic (¢ )sin (w, —w)t —ng (¢ )cos (wy—we )t ]
tSwem(8)+nd(t)w, +n () (¢)~ne (¢ )ng (£)+n2(t)w,

The instantaneous frequency is centered at the carrier frequency of the
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signal, f ;.

For weak signal, S?<<o?

My(t)
M ()

Frr () = oo+ Ao

where
My(t)=-w, SE-Sw,m,(t)+5%),
=S [=7ic (¢)sin (0, —w)t —n, (£)cos (-, )t ]
FS0my (£)4n (¢ )rig (¢ ) =11, (¢ )mg (£)
So the instantaneous frequency is centered at the carrier frequency of
the Gaussian noise, f.. The experimental results of high S/N are shown

in Fig. 2.3. The experimental results of low S/N are shown in Fig. 2.4.

From Case 3, for high S/N, instantaneous frequency can be used to
detect a hidden periodic signal when its period is unknown. This is a

different way to use periodogram [blo76a] and harmogram [hin8Ra].

~.

2.10 Rayleigh Distribution of the Envelope of Gaussian Noise

in Discrete Time Case

I. Discrete Envelope
§(n) is the convolution of s(n) with Hilbert operator h(n).

The discrete envelope is defined as

n)=Vs?(n)+s3(n) = 2 5 -
A (¥570) =~/ s%m)+ B hn—k)s &)

=\/sz(n)+ NET h(k)s(n—k) n=0,1,2,:- -+ ,N-1.

k=—(N-1)
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Figure 2.3A Strong signal (f,=10Hz) plus Gaussian noise, its envelope and
instantaneous frequency
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II. Rayleigh Distribution of Discrete Envelope

Lemma 6:

Suppose that s(n), n=0, 1, 2, - - - , N-1, where N is finite, are samples
from a Gaussian independent noise, with zero mean and variance o~.
After Hilbert transforming, s(n) is Gaussian, independent from s(n) at
the time n, and the envelope distribution in the' analytic signal
representation is a Rayleigh density.

Proof :

s(n), n=0, 1, - - ., N-1, are Gaussian N (0,0%) and independent.

N-1 N-1
s(n)= Y  h(k)s(n—k)= Y h(n—k)s(k)
k=—(N-1) k=0

s(n) is a linear combination of Gaussian s(k), k=0, 1, ---, N-1, and is

also a Gaussian, with

Mean of S“(n):E[S‘(n)]: Nijlh(n —k)E[s(k)]=0, and
k=0

Variance of §(n)= Nz_l h3(k)Var[s (n—k )]:Nilhz(n —k ) Var[s (k)]
» k=-(-1) k=0

1 S 11
I N=128, % h3k)=0.9037, Y h3(k)=0.9648, Y h3(k)=0.9814.
k=-128 k=-122 k=-118

After n=5, Var[s(n)]=0® Sos (n)is Gaussian with N(0,0%)
The next step is to prove that s(n) and 5(n) are independent from each

other at the same time t=n.
N-1

Covariance (s (n),5(n))=COV(s (n ) 2 h(n—k)s (k))
k=0

=COV(s (n),[h(n)s'(0)+h(n—1)s(1)+h(n—2)s(2)+ .
+h(0)s(n)+ - - - th(n—(N-1))s(N-1)])
=E[(s(n)=0)[r(n)s(0)+ - - - +A(0)s(n)+ - - - +h(n —(N-1))s(N-1)-0]]
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=0+0+ - - - +E[s(n)h(0)s(n)]+0+0+ - - - +0

=h(0)E[s?n)]=00%=0

(For n#k , s(n) and s(k) are independent.)

So s(n) and §(n) are uncorrelated at the same time t=n. Because s(n)

and §(n) are Gaussian N(0, 0® ). So they are independent at the time

t=n.

Hence, envelope A(n)= \/sz(n)+§2(n) is a Rayleigh distribution.

2.11 Instantaneous Phase of Gaussian Nois_é

Lemma 7:

The instantaneous phase of Gaussian white bandpass noise is a uniform

LI

distribution between —;Land 5

Proof ;
(1) Continuous time case

For instantaneous phase,

ﬂ(t):tan‘lﬂﬁ—

n(t)

n(t)=n; (t)cos(we t +9)—ng (¢ )sin (o, t +y)

7 (t)=n; (¢)sin(we £ +9)+ng (¢ )cos (w, £ +7)
Eln(t)n(t)]
=E[(n (t)cos(wg t +9)—ng (£ )sin (w, ¢ +¥))(ne (¢ )sin(we £ +9) +ng (¢ )cos (wp t+9))]
=FRes (0)cos®(w  t +9)— R, (0)sin®*(w, t +9)
=0 (for Gaussian bandpass white noise, Ry (T)=R_ o (17)=0)
Because they are Gaussian, n(t) and 7 (¢) are independent at the same

time t.
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Thus, ¥(¢)=tan™! 'Z-J(%is a uniform distribution between lzﬂ—and 127_

(R) Discrete time case
From Lemma 6, 7 (i) and n(i) are Gaussian, independent with N(0, o%),
so the instantaneous phase is uniformly distributed in the interval

The distributions of envelope, instantaneous phase, and instantane-

ous frequency of Gaussian noise are shown in Fig. 2.5.

2.12 FM Demodulation Using Instantaneous Frequency

FM baseband signal can be demodulated by using instantaneous

frequency.

(I) FM demodulation without noise.

Lemma 8:
A frequency modulated waveform has the form
s(t)=Acos[w .t +A, m (t)dt]
or s(t)=Asin[w t+A, m (t)dt]
If the carrier frequency f. is high and the fequency spectrum of m (¢)
is low, i.e., Jgr(B)=0and Jy 4 (B)=0when (2k +1)w,,>w, for large posi-

tive integer k£, then the instantaneous frequency of this FM signal can

be derived as
w(t)zwc+%{Awfm(t)dt]
=we +A,m (t)

or  fi(t)=f+SEm(t)

and m (t)= 21, (t)-1,)
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Figure 2.5A Gaussian noise, N(0,0.024%) sampling interval = 0.004 seconds
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Proof:
‘ Let m(t)=cos v, £, A=1
s (t)=Acos[w t +A, [cosw,, tdt ]

W

=cos (Wt +Bsinw,, t ) where B=
3 m

=cos we tcos (Bsinwy, t) —sin o, tsin (fsinw,, t)

=coswct[Jo(B)+2 i Jor (B)cos (Rkwy, t)]
k=1

—sinw t[2 T Jope1(B)sin[(2k +1)0, ¢]]
k=0

where Jg (B)andJ o 41(B) are Bessel functions.

From the assumption, Jg(8)=0and Jg ., (8)=0when (2k +1)w,,>w, for
large positive integer k.

Then using Hilbert transform theorem

H.T.{s(t){= s(¢)

=sinw,t [Jo(ﬁ)+2k§1J2k (B)cos (Rk w,, t)]

+coswct[R Y Jop1(B)sin[(Rk +1)w,, t]]
k=0
=sinwgtcos (Bsinw,, t )+cosw, tsin (Bsinw,, £)

=sin (w. t +Bsinw,, t)

Y(t)=s(t)+j5(¢) =exp[j(wct +Bsinw, t)]

£4(8) = Shtmy $EY

Y(t)
= +A°’ t = +A“’ (t)
"fc gCOS&Jm _fc gm

then, m (t)z'il(fi(t)—fc)

w

The same procedures can be used for s (¢)=A4sin [w, t +A, [ coswy, tdt ]

In the computer simulation, there are two examples as follows.

FExample 2:
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s(t)=sin[2nf . t+2mfq fm (t)dt]
where f.=R5Hz,f;=25Hz, the sampling interval is 0.001 second and
m(t) is a unit step function. The instantaneous frequency c;f this FM is a
step function shown in Fig. 2.6A.

Ezample 3:

s(t)=sin[2nf t+A,[cosw,tdt], where m(t)=cos W b

A
=sin[2nf t+ —sinw,,t]
C'Jm

A
=sin[2nf t+sin2nf,, t], letw—”-':l

m

where f.=50Hz,f,, =5H=.
In order to satisfy the conditions in Lemma 8, i.e., the carrier frequency
fe¢ is high and the frequency spectrum of m (¢) is low,

J 21 (B)=0and J g .1(B) =0 when (2k +1)wnp>w, for large positive integer k,

A
fi(t)=F o+ S2coswpt

= fetfmcosw,t

The instantaneous frequency of this FM is a cosine waveform shown in
Fig. 2.6B. The small variation of the results shown in Fig. 2.6A and 2.6B
comes 'from the finite discrete calculation like the FIR filter [opp75a,
rab75a].

(II) FM demodulation in Gaussian noise. |

~ In the Gaussian 10 - 80 Hz white noise plus FM signal,

Let m (¢)=cosw,, ¢

z(t)=s(t)+n(t)

=Acos (0, t +Bsinw, t)+n, (¢)cos(w, ¢t +Y)—ng (£ )sin (o, t +9)

After taking Hilbert transform, we obtain

Z (¢)=A4sin (v, t +Bsinw,, t)+n, (¢)sin(w, t +9) +ng(t)cos (wet+9)

For convenience, set ¢¥=0.
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nal is a cosine waveform
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in which the numerator in the instantaneous frequency formula

=A2(w+ﬁwmcoswmt)—Anz(t)+chn1(t)+A(wc +Bwpm cosw, L), (L)

0 (&) +n2(E))+ne (g () =g (£ )73, (¢)

where n,(t)=n_(¢)cos (ﬁsinwmt)+ns(t)sin(ﬁsinwmt)

where ng(t)=n, (¢ )sin (Bsinwy, t )+ng (¢ )cos (Bsinw, t)

and the denominator in the instantaneous frequency formula
z?(t)+2%(t)=AP4n2(t) +nl(t) +24n (t) =N,(¢)

If A>> 0% ie. for strong signal, the instantaneous frequency can be

derived as
Fi(&)=Fc 4B meosomt +Z=Ny(t)

No(t)
_2m

then,m(t)=cosw,nt=ﬁ—fl—[_fi(t)—fc— ]

- " A,

N3(t)
N,y (t) '’

and N5(t)= —Any(t)+Aw.n,(8)+A(w, +Bwy, coswy, t)n,(t)
twg (&) +nd(t))+n, (81 (¢) —ng ()71, (£)

—(w¢ +Bwy, cosw,y, £)(A2+nl(t)+n2(t)+24n 1(8))

=[f:i(&)=sc-

where N,(t)=

If A<< 0% ie. for weak signal, the instantaneous frequency can be

derived as
filty=g 2]
where N (¢)= x?g; ;

and Ns(t)=4%(w, +fw,, cosw,, £)—Ang(t)+Aw,nq(t)
+A(w¢ +Bwm coswpy, £ )n ()

v ()75 (8) —n ()72 (8) —; (A%+24n4 (1))
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The instantaneous frequency will be centered at the carrier frequency

Jc. The signal will not be demodulated.

If the signal is a sine carrier, i.e. s (t)=4sin[w, (t)+Bsinw,, t], the

results will be the same.

In the computer simulation, there are two examples as follows.

Ezample 4:
z(t)=s(t)+n(t)=Asin[2nf t+2nf 4 m (¢)dt ]+n ()
where m(t) is a unit step function, f, =35Hz,f 4=25Hz.

For strong signal, A>> 0%,(4=1,0%=0.05%) , the result is shown in Fig. 2.7,

a step function.

Ezample 5:

:r:(t)=s(t)+n(t)=Asin[2nfct+A,_,fm(t)dt]+n(t),

where m(t)=cos w,, ¢, f.=35Hz,f,, =65H=.

For strong signal, A>> 0%(4=1,0°=0.05%), the result is a cosine

waveform and shown in Fig. 2.8.

2.13 Envelope Application to Classification of Signal

and Gaussian Noise

In Fig. 2.9, there are two hypotheses:
Hg: x(t)=n(t)
Hy:x(t)=s(t)+n(t)
where signal s(t)=S cosw,t and Gaussian ~ noise
n(t)=n¢ (¢ )cos(wt +¥)—ng (¢)sin (w, t +9)
Consider Hg: x(t)=n(t) then its envelope A(t) as the above property is a
Rayleigh distribution.
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A(E)=VnE(t)+nZ(t)
—(a?)
Py(e)a)=“ezp[ 21 020
o R0
Consider Hy:z(t)=s(£)+n(t), then for strong signal, i.e. high S/N, its

envelope A(t) is approximately Gaussian.

_ 1 —(a—S)?
P, = e ]
A(t)(a‘) @O’ xp[ 202 4

Using Bayes decision rule,

P(Ho)p(X/ Hg)> P(H,)p(X/ H,;), then X belongs to Hy.

P(Ho)p(X/ Ho)< P(Hy)p(X/ H;), then X belongs to H,.

For half region is signal and half region is noise, so selecting

P(Hg)=P(H,)=1/2, the Bayes classifier is

aVan Y
o 20

For noise, 0=0.05, signal S=0.2, then the Bayes classifier is 2=0.122.

log, (Ra—-S)

The classification result is shown in Fig. 2.9D. Compared with the origi-

nal signal plus noise in Fig. 2.9A, the result in Fig. 2.9D is quite good.

Envelope in the signal s(f{)=Scosw;f plus noise and noise have
Gaussian and Rayleigh distributions respectively. So the Bayes
classifier can be determined easily. But instantaneous frequency distri-
butions in the signal plus noise and noise are centered at fq1and f,
respectively. No model distribution can be used and the classifier may
be designed from histogram distribution. So using envelope as the
feature for the classification of signal and noise is better than using the

instantaneous frequency for high S/N.

2.14 Resolution and Analytic Signal Analysis in Ricker Wavelets
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The central part of a f —Hz zero-phase Ricker wavelet [ric40a, 45a,
53a] can be considered as a double-sideband modulated waveform with
carrier frequency f. The carrier frequency f is higher than the
baseband signal and satisfies the Hilbert transform theorem. So the
instantaneous frequency will be approximately f Hz. The instantane-
ous frequency of 25 Hz Ricker wavelets is shown in Fig. 2.10 for sam-
pling interval 0.001 second and in Fig. 2.11 for sampling interval 0.004
seconds. Although the maximum of the instantaneous frequency of 25
Hz Ricker wavelets are different for different sampling intervals, they

are approximately equal to f Hz of f —Hz Ricker wavelets.

For the resolution problem, from Robertson and Nogami [rob81a],
the limit of resolution between two seismic wavelets is the sand thick-
ness thinning to a quarter period of the dominant seismic wavelet, i.e.,
the distance between the peaks of the two seismic wavelets should be
larger than half period of the dominant wavelet. The situation needs to
be investigated here is when the peak-to-peak distance of two seismic
wavelets is less than the half period of the dominant wavelet.

Fzxample 6:

For 20 Hz Ricker wavelet, f =20, T:—z—l-o—-:0.05sec.

then —g—=0.025sec. (half period)

Sampling interval = 0.004 sec./per interval

8___832 =6.25=6077 points (for resolution limit)

In Fig. 2.12, results of the 4-point peak-to-peak distance of two Ricker
wavelets are shown, where the dominant 20 Hz zero-phase Ricker
wavelet is related to the reflection of high amplitude, low frequency,
and phase reversal; the other is 30 Hz Ricker wavelet. Some experi-

ments are conducted when the distances between two peaks of zero-
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phase 20 and 30 Hz Ricker wavelets are <6, 15,8, 7, 6,5, 4, 3,2, and 1
points. The separability of two Ricker wavelets are quite good until the
peak-to-peak distance reduces to 6 or 7 points (half period). When the
peak-to-peak distance is less than 6 points, for the dominant 20 Hz
Ricker wavelet, its instantaneous frequency is not affected too much,
but the peak of its envelope is shifted and higher than that of the origi-

nal 20 Hz Ricker wavelet because of the interference from low ampli-

tude 17Hz Ricker wavelet.

2.15 Conclusions

The conclusions of this investigation are summarized as follows.

(1) Hilbert transform theorem plays the most important role in the

analytic signal analysis.

() The minimum number of points of Hilbert operator required for
a finite discrete signal with length N is 2N-1. In order to implement
§(n) in the frequency domain using FFT algorithm and avoid circular
convolution, the minimum number of points of signal s(n) and Hilbert
operator h(n) is (SN —2),, where (3N —2), is the smallest integer that is
a power of 2 and is greater than 3N-2. For non-causal Hilbert operator,

h(n) should be padded with sufficient zeros in the middle.

(3) Instantaneous frequencies of AM and sinusoidal waveform are

equal to their carrier frequencies.

(4) The results of signal and Gaussian bandpass white noise in the
analytic signal analysis are as follows.

Case 1: Gaussian 10 - 60 Hz white noise only.

The envelope is a Rayleigh distribution, the instantaneous phase is a
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uniform distribution between —n/2 and 7/2. Both properties can be
proved in the continuous and discrete time domains. The instantane-
ous frequency is centered at the carrier frequency f,.

Case 2: Sinusoidal signal plus Gaussian 10 - 80 Hz white noise with the
same carrier frequency f.

The envelope Is a Rician density [gag78a]. For strong signal, the
envelope is a Gaussian distribution. For weak signal, the envelope is a
Rayleigh distribution. For both strong and weak signal cases, the
instantaneous frequency is centered at the carrier frequency f..

Case 3: Sinusoidal signal plus Gaussian 10 - 60 Hz white noise with car-
rier frequencies f,; and f, respectively.-

For strong signal, the envelope is also a Gaussian distribution and the
instantaneous frequency is centered at the signal carrier frequency f ;.
So using instantaneous fi*equency analysis can detect a hidden periodic
signal for high S/N when its period is unknown. For weak signal, the
envelope is also a Rayleigh distribution and the instantaneous fre-

quency is centered at the noise carrier frequency f..

(5) FM demodulation using instantaneous frequency is quite satis-

factory for high S/N.

(6) For high S/N, using envelope as the feature for classification of

signal and noise is better than using the instantaneous frequency. -

(7) The central part of a f —Hz zero-phase Ricker wavelet can be
considered as an approximately sinusoidal signal with carrier frequency
S . So the instantaneous frequency will be approximately f Hz. If the
peak-to-peak distance of two Ricker wavelets is less than the half
period of the dominant one, then its instantaneous frequency is not

affected too much, but its envelope is shifted and higher than the origi-

nal one.
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CHAPTER III

DECISION-THEORETIC PATTERN RECOGNITION FOR DETECTION
OF CANDIDATE BRIGHT SPOT

3.1 Introduction

Feature extraction in seismic signal has been discussed in Chapter
2. In this Chapter, decision-theoretic pattern recognition will be used

to detect candidate bright spot.

As mentioned in Chapter 2, zero-phase Ricker wavelets are usually
used in the simulation of seismic analysis [rob81a, tan79a]. The pattern
wavelet of the bright spot in real data can be compared with the central
part of the zero-phase Ricker wavelet. From Chapter 1, the physical
properties of bright spot is known to be relative. Here, 20Hz zero-
phase Ricker wavelet is simulated as the reflection wavelet of bright
spot. The 20Hz Ricker wavelet has the physical properties of high
amplitude, low frequency content, and phase reversal. 30Hz zero-

phase Ricker wavelet is simulated as the reflection wavelet of non-

bright spot.

At first, Ricker wavelets are classified by using linear and tree
classification techniques. Then a simulated seismogram using Ricker
wavelets is classified. The usage of Ricker wavelets in the simulation is
to test the proposed techniques as they are applied to the real seismo-

gram. At last, pattern recognition is used for the detection of
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candidate bright spot in the real seismogram.

The classification result in this chapter also gives the candidate
bright spots. The use of spatial relation to test the consistency of

reflection layer of bright spot is discussed in Chapter 6.

In this chapter, as in [hua82a], envelope and instantaneous fre-
quency are again used as the features in the classification of Ricker
wavelets and an important feature, polarity, is uséd to check the phase
reversal property of gas reflection. In the analysis of zero-phase Ricker
wavelet, the envelope is uniformly distributed between one-third of the
maximum envelope and the maximum envelope, and the instantaneous
frequency is almost constant within this interval. So the use of tree
classification appears to be a good choice. Besides, the tree classifiers
in this case are easy to design and computationaily efficient, and tree
classification has been used in remote sensing data [swa77a, 78a,
wu75a, you78a). Three hypotheses are proposed in the tree
classification for detection of candidate bright spot. The first
hypothesis is that the candidate bright spot has high amplitude, low
frequency content, and phase reversal. The second hypothesis is that
the candidate bright spot has high amplitude and low frequency con-
tent. The third hypothesis is that the candidate bright spot has high

amplitude and phase reversal. Linear classification is also discussed in

the following.

3.2 Linear Classification of Ricker Wavelets
for the Detection of Candidate Bright Spot

A seismic section always contains several pattern classes. In order

to analyze the patterns in a seismic section, a decision-theoretic
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pattern recognition system is presented in Fig. 3.1. One-dimensional
simulated seismic trace and two-dimensional simulated seismogram
are investigated here. The purpose of the classification of Ricker
wavelets is to determine how to classify the pattern wavelets in a
seismic trace. The one dimensional classification can be directly
applied to two dimensional classification problem. In a two-dimensional
seismogram, training traces are randomly selected or selected from
the high amplitude traces. Classifiers are derived from the features
distribution of the training traces. So the classifiers are determined
from the physicél properties of training traces. From the classification

of simulated seismogram, the results are the candidate bright spots.

3.2.1 Linear Classification of Ricker Wavelets

In a simulated seismic trace (Fig.3.2), three classes of data are gen-
erated. The 20Hz, 30Hz Ricker wavelets and Gaussian white band 10 Hz

- 60 Hz random noise are generated. The three pattern classes can be

defined as
H1i : r(t)=n(t)
HR : r(t)=R0Hz Ricker wavelet + n(t)
H3 : r(t)=30Hz Ricker wavelet + n(t)

Using analytic signal analysis, envelope and instantaneous fre-
quency are extracted from the signal itself and used as the two features
in the decision-theoretic pattern recognition system. The envelope
value is multiplied by 200.0 such that the magnitudes of both envelope
and instantaneous frequency are in the same order of magnitude.
From the scattering diagram of the data distribution of the two

features in Fig. 3.3, the three pattern classes can be separated.
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Linear classification technique is used. A modified fixed-increment

training procedure is presented in the following which is different from

the fixed increment training procedure [fuk72a].

In a two-dimensional feature space, suppose Y is a training sample.
The training sample belongs to one of the two classes, C, and Cy. The
linear equation of decision boundary has weight vector W. Suppose that
the linear equation passes through a given point (a,b). This given point
(a,b) is given by a subjective selection or the intersection point from
the two equations of decision boundary which are solved by using fixed

increment training procedure [fuk72a, fu8Ra].
HEIE
[y

[0
Set a=1, Initially set = [o
0

fl(t) 1
t) Weight vector W = ngi

If Ye(C,, YTW>O, W not change
If Yec,, YTw<o,

’w(l)

w'(R)| ~ E 3]”1[5&%] and w'(3) = —(w'(1)a +w'(2)b)

If YeCy, YT W<0, W not change
If YeC,, YT w=o0,

[w )]~ 5131‘“[@%3] and w'(3) = —(w'(1)e +w'(2)b)

In Fig. 3.3, using the fixed-increment and the modified fixed-

increment training procedures, the equations of decision boundary are

determined as follows.

Here, go3(z,y)=0 is the equation of decision boundary between the
feature distributions of 20Hz and 30Hz Ricker wavelets, g13(z,y)=0is

the equation of decision boundary between the feature distributions of
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30Hz and Gaussian noise, g,5(z,y)=0 is the equatién of decision boun-
dary between the feature distributions of 20Kz and Gaussian n'oise.
Using the fixed-increment training procedure, two equations of decision
boundary gi3(z,y)=0, gas(z,y)=0, can be found and have intersection
point (@,b). Then the third equation of decision boundary g,5(z ,y);O is
determined by using the modified fixed-inerement training procedure,
i.e. the last element of the weighting vector will be changed by
w'(3)=—(w'(1)e +w'(2)b) The three equations of decision boundary

will intersect at one point (a,b) (Fig.3.3).

The other method is that a point (a,b) is given first and the three
equations of decision boundary will pass this point (a,b) after training
procedure. It is possible to give this point at two dimensional space.
The convergence of this modified fixed-increment training procedure is
very fast. In this seismic trace, the linear classification result is shown
in Fig. 3.4. The central parts of 20Hz and 30Hz Ricker wavelets are

classified, so the classification result in Fig. 3.4 is quite good.

3.2.2 Linear Classification for the Detection of
Candidate Bright Spot

The one-trace pattern recognition techniques can be directly
applied to 2-D reflection seismogram to classify the candidate bright
spot because the processing is trace-by-trace. A typical géological
model of gas accumulation from Dobrin [dob76a] is shown in Fig. 3.5A.
The gas sand zone has density D=2.025gm /cm?, velocity
V=1.737km /sec. The oil sand zone has density D=2.27gm./ cm3, velo-
city V=2.225km /sec. Above the gas and oil sand zone is the shale

layer. The primary reflection synthetic seismogram is generated in Fig.
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3.5B. The 20 Hz and 30 Hz zero-phase Ricker wavelets are used in Fig.
3.5B [ric40a, ric45a, ric53a]. There are 64 traces in the seismogram.
Every trace has 512 points. The sampling interval is 0.004 seconds.
Gaussian 10 - 60 Hz white noise is a simulation of recording of earth
ground roll motion. Of course there are some sophisticated modeling
techniques to generate more complex seismograms, 'but the primary
reflection seismogram is the most efficient and the easiest one

corresponding to the geological structures.
L 2

The thickness of the gas sand zone is large because the time to
pass this gas sand zone is longer than one cycle of 20Hz Ricker wavelet.
The thickness of the gas sand zone considered in the simulated seismo-
gram is related to the resolution problem for the 20Hz Ricker wavelet
passing through the gas sand zone without interference with the

reflection from the bottom layer.

Two pattern classes are considered in the simulated seismogram.
One is the 20Hz Ricker wavelet at the boundary of shale and gas sand
zones (bright spot). The 20Hz Ricker wavelet has high amplitude pro-
portional to the high reflection coefficient, phase reversal and low fre-
quency content due to high frequency attenuation in the gas sand zone.
The other is the non-bright spot, the 30Hz Ricker wavelet at the other
layer boundary reflection and Gaussian white band 10 Hz - 60 Hz ran-
dom noise corresponding to the random noise collected in the field.

The envelope (multiplied by 200.0) and instantaneous frequency are

selected as two features.

Two methods for the automatical selection of training traces are

presented in the following.

(I) The training traces are equally selected from the seismogram to

cover the reflection characteristics of every kind of layers. Suppose
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that the number of traces in the seismogram is N, then the number of

. .. N
training traces is 'S

(I) The training traces are selected from high amplitude traces.

Algorithm 3.1: Selection of training traces from the high amplitude por-

tion

Input: a(i,j) values of seismic data, N traces of seismogram with m

points per trace.
Output: Location of training traces

Method:
(1) Let the number of training traces equal to N/8.

(R) Calculate the power distribution p(j) along every trace. The

power of each trace is calculated by

{ m 2, . o
;Ea (t.7)=p(F) j=12, -+ N

1=1

(3) Use K-means algorithm for K=2 to find the cluster centers of

(m+my)
two classes, m, and my, and let the threshold = ~—1— "2/

(4) Thresholding p(j) to segment the whole trace into several
zones. Determine the first and last points of each zone and calculate

the length of each zone.

(5) Set weight 2 for the power value above the threshold and weight
1 for the value below and equal to the threshold. Distribute the N/8

training traces to these zones equally.
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Discussion of K-means clustering analysis can be found in [lin80a,
swa78a, tou74a). Two classes are in the analysis, they are high ampli-
tude traces and low amplitude traces. In Step (3), using K-means algo-

rithm for K=2 can separate the two classes.

Using Algorithm 3.1 in simulated - seismogram of Fig. 3.5B, the
power values along time axis is shown in Fig. 3.5C, the threshold is
0.0017. Three zones are segmented. From the 1st to 19th traces are
the first zone, from the 20th to 45th traces are the high amplitude
zone, from the 46tﬁ to 64tk traces are the third zone. The location of
the training traces are the 10th, R3rd, 28th, 32nd, 36th, 40th, 55th
and shown in Fig. 3.5C. Training traces are concentrated on the high
amplitude traces. At the first z'one and third zone, only one testing
trace is at each zone because there is round off error. The total
number of training traces selected is 7 in this experiment. The histo-
gram of the power data is shown in Fig. 3.5D. From visual inspection,

the threshold is 0.0017 which is the same as the output of Algorithm
a.1,

In the experimental study, method (I) is used. Training traces are
equally selected from the seismogram for easy selection and conveni-
ence. The training traces are the 4th ,12th,20th ,28th ,36th ,44th, 52nd,
and 60th traces. Training samples are selected for the values of
envelope larger than 0.15 in Fig. 3.6A. A linear classifier is used. The
modified fixed-increment training procedure is applied. In the scatter-
ing diagram of two features, a point (a,b) is given first, the
classification boundary will pass through this point (,b) after the solu-
tion weight vector is found. Classification result using linear classifier
is shown in Fig. 3.6B. Compared with original seismogram in Fig. 3.5B, it

appears to be quite good in the detection of candidate bright spot.
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3.3 Thin-Bed Effect

In Fig. 3.94, the time to pass through the gas sand zone is less than
the half cycle of 204z Ricker wavelet, the gas sand zone is called "thin-
bed". Using the results from Section 2.13, the experiments of thin bed
for the detection of candidate bright spot are discussed. Two simulated
seismograms of the secdnd hypothesis for thin bed of gas sand zone are
generated, i.e., high amplitude and low frequency at the gas reflection.
The simulated seismogram for the quarter wavelength thickness of gas
sand zone is shown in Fig. 3.7. The simulated seismogram for the thick-
ness of the 2/3 quarter wavelength in gas sand zone is shown in Fig.
3.9B. From both Fig. 3.7 and Fig. 3.9B, although the 20 Hz Ricker
wavelet at the top of the gas sand zone is mixed with the 30 Hz Ricker
wavelet at the bottom of the gas sand zone, the 20 Hz Ricker wavelet is
dominant and can overcome the interference, i.e., the physical proper-
ties are preserved. Compared with the original simulated seismograms
in Fig. 3.7 and 3.9B, the classification results shown in Fig. 3.8 and Fig.

3.10 respectively seem to be still good.

3.4 Tree Classification of Ricker Wavelets for the
Detection of Candidate Bright Spot

3.4.1 Introduction

In the decision-theoretic approach, another way of detecting bright
spot is using tree classification. Three kinds to detect the hypotheses

of candidate bright spot in the simulated seismic traces and
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seismograms are presented in the following.

(1) The first hypothesis is that the bright spot has high amplitude,
low frequency content and polarity reversal. Envelope, instantaneous

frequency and polarity are used in the tree classifier.

(R) The second hypothesis is that the bright spot has high ampli-
tude and low frequency content. Envelope and instantaneous frequency

are used in the tree classifier.

(3) The third hypothesis is that the bright spot has high amplitude

and polarity reversal. Envelope and polarity are used in the tree

classifier.

The first hypothesis of candidate bright spot is the most restrictive

one.

In the simulation, zero-phase Ricker wavelets are used. The same
procedures can be used for minimum-phase wavelets. The purpose of
one-dimensional classification of Ricker wavelets is to determine how to
classify the pattern wavelets in a seismic trace. The block diagram of a
tree classification system is shown in Fig. 3.11. From Fig. 3.11, for the
second hypothesis, the polarity classification is not used. For the third

hypothesis, the instantaneous frequency is not used.

For an input seismogram, the data are initially not known as candi-
date bright spot or non-candidate bright spot. Some testing traces are
equally selected from the seismograms, the
41h ,12th ,20th ,28th ,36th 44th, 52nd, and 60th traces; three hypotheses
and an unsupervised clustering analysis are used to detect whether or
not the testing traces have candidate bright spot. The candidate bright
spot is detected if one of the three hypotheses is satisfied. Thresholds
are delermined by inspeclion for a good separability in the scatlering

diagram of envelope and instantaneous frequency. After designing the
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tree classifier in terms of envelope and instantaneous frequency from
the testing traces, a classification experiment is performed. Polarity
classification is performed after the classification in terms of envelope
and instantaneous frequency. In real data experiment, the seismo-
grams at Mississippi Canyon and High Island are the relative-amplitude

recording with bandpass 10 - 50 Hz.

3.4.2 Definition of Polarity

Envelope and instantaneous frequency are defined in Chapter 2.
Polarity of zero-phase Ricker wavelets and minimum-phase wavelets

are defined as follows:

(I) Suppose that a truncated symmetric zero-phase Ricker wavelet has
the duration of N points, aq,a,, -, ay-;. Select No<N, where N, points

pass through the center (extremum) of the Ricker wavelet.

If Y @ <0, then the polarity is positive.

i=j

‘l:=j+N°—l
If ) a; >0, then the polarity is negative.

1=j

(I) Suppose that a truncated minimum-phase wavelet [rob87a] has the
duration of M=-points, aga,, -- ay-;. Select No<N, where N, points

pass through the extremum of the minimum-phase wavelet.

If Y a >0, then the polarity is positive.

=7






